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A nonlinear QSAR Study Using Oscillating Search and SVM as an Efficient 
Algorithm to Model the Inhibition of Reverse Transcriptase by HEPT Derivatives
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Summary: Quantitative structure-activity relationships were constructed for 107 inhibitors of HIV-1 
reverse transcriptase that are derivatives of 1-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine 
(HEPT). A combination of a support vector machine (SVM) and oscillating search (OS) algorithms 
for feature selection was adopted to select the most appropriate descriptors. The application was 
optimized to obtain an SVM model to predict the biological activity EC50 of the HEPT derivatives 
with a minimum number of descriptors (SpMax4_Bh (e) MLOGP MATS5m) and high values of R2 

and Q2 (0.8662, 0.8769). The statistical results showed good correlation between the activity and 
three best descriptors were included in the best SVM model. The values of R2 and Q2 confirmed the 
stability and good predictive ability of the model. The SVM technique was adequate to produce an 
effective QSAR model and outperformed those in the literature and the predictive stages for the 
inhibitory activity of reverse transcriptase by HEPT derivatives.
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Introduction

Viruses are infectious agents that reproduce 
in the intracellular environment of a host cell. Viruses 
can be classified according to the nature of their 
genomes (DNA or RNA) [1]. Reverse transcriptase 
(RT), the major target of antiviral chemotherapy for 
AIDS/HIV [2] and a key multifunctional enzyme in 
the life cycle of human immunodeficiency virus type-
1 (HIV-1). HIV-1 is the causative agent of AIDS 
(Acquired immunodeficiency syndrome) [3] and 
features high-molecular-weight RNA that encodes an 
enzyme (reverse transcriptase) [4] that allows the 
transcription of the viral RNA into pro-viral DNA. 
This pro-viral DNA can then integrate into the 
genome of the host cell [5]. HIV-1 and -2 are the 
most common and most pathogenic retroviruses and 
are responsible for the onset of AIDS.[6] HIV 
infection is a chronic infection that affects host cells 
carrying the CD4 receptor (T cells) [7]. Once 
integrated, the retrovirus replication cycle starts, 
resulting in the production of new viral particles. This 
replication results in the slow death of infected cells.

The disappearance of CD4 lymphocytes 
leads to immunodeficiency, thereby inducing the 
occurrence stage of AIDS [8]. Inhibition of reverse 

transcriptase remains the ideal way to combat this 
type of retrovirus by blocking the viral replication 
cycle. The beneficial effects of reverse transcriptase 
inhibition have attracted the attention of scientists 
and pharmaceutical companies to develop and enrich 
this therapeutic class. Several molecules have been 
marketed as anti-HIV drugs, including Combivir, 
Kivexa, Trizivir, Tenofovir, and Efavirenz [9].

Modeling methods have undergone 
progressive development in the fields of 
pharmaceutical chemistry and drug design to study 
enzyme inhibition in the absence of detailed 
information on the underlying mechanism. Among 
these methods, the use of quantitative structure-
activity relationships (QSAR) requires further 
progress [10]. QSAR studies have become essential 
in pharmaceutical chemistry and drug design, 
particularly when the availability of samples is 
limited or experimental measurements are dangerous, 
time consuming and expensive [11]. Technically, this 
method is based on four pillars: the basic structure, 
physicochemical parameters (molecular descriptors), 
descriptor selection method, and learning algorithm. 
The use of this modeling approach is the heart of our 
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work, particularly in the development of stable and 
robust QSAR models that can effectively predict 
inhibitory activity against reverse transcriptase and 
thus contribute to the development of new molecules 
that inhibit this enzyme. Here, we conducted a 
nonlinear QSAR study of reverse transcriptase 
inhibitors based on a set of molecules derived from 1-
[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine 
(HEPT) (Fig 1).

Fig. 1: General structure of HEPT derivatives.

Experimental

The data set used in this QSAR study 
consisted of 107 compounds selected from the 
literature [12] (Table-1). All 2D structures 
(Molecule.mol) were downloaded from the 
ChemSpider database [13] and were preoptimized 
using the Molecular Mechanics Force Field method 
(MM+) included in HyperChem [14]. Finally, 
optimization was performed utilizing the semi-

empirical Austin Method (AM1) with a root mean 
square gradient of 0.001 kcal.mol-1.

The molecular descriptors were computed 
using Dragon software [15], which calculated the 
parameters of all compounds (a total of 4,885 
different molecular descriptors). The descriptors 
obtained were analyzed to remove constant and near 
constant variables to reduce redundancy in the 
descriptor data matrix. The correlation was examined 
to eliminate highly correlated descriptors (R > 0.90). 
Finally, 686 molecular descriptors remained.

The EC50 values were scaled (from 0 to 1) to 
reduce the skewness of the data set and were used for 
subsequent QSAR analysis as dependent variables. In 
our study, to build the oscillating search-support 
vector machine (OS-SVM) models, we combined 
SVM with the OS algorithm for feature selection as 
the objective function. SVM, which was developed by 
Vapnik [16] as a novel algorithm of machine 
learning, is increasingly popular due to its many 
striking features and superior empirical performance. 
SVM was first introduced for solving pattern 
recognition problems and measure the quality of 
subset features, particularly R2 and Q2, which are 
calculated using the trained SVM model. The variable 
selection flowchart with the algorithm research 
oscillating support vector machine (OS-SVM) is 
shown in Fig 2.

Table-1: Chemical Structures for Experimental. and Calculated Anti-HIV-Activities of EC50.
ID SMILES Status EC50 -Exp EC50-Cal
1 Cc2ccccc2SC1=C(C)C(=O)NC(=O)N1COCCO train 4.15 4.63
2 [O-][N+](=O)c2ccccc2SC1=C(C)C(=O)NC(=O)N1COCCO train 3.85 4.89
3 COc2ccccc2SC1=C(C)C(=O)NC(=O)N1COCCO train 4.72 5.16
4 Cc1cc(ccc1)SC2=C(C)C(=O)NC(=O)N2COCCO train 5.59 5.65
5 CCc1cc(ccc1)SC2=C(C)C(=O)NC(=O)N2COCCO train 5.57 5.20
6 CC(C)(C)c1cc(ccc1)SC2=C(C)C(=O)NC(=O)N2COCCO test 4.92 4.70
7 FC(F)(F)c1cc(ccc1)SC2=C(C)C(=O)NC(=O)N2COCCO train 4.35 4.51
8 Fc1cccc(c1)SC2=C(C)C(=O)NC(=O)N2COCCO train 5.48 4.99
9 Clc1cccc(c1)SC2=C(C)C(=O)NC(=O)N2COCCO test 4.89 5.12

10 Brc1cccc(c1)SC2=C(C)C(=O)NC(=O)N2COCCO train 5.24 5.09
11 Ic1cccc(c1)SC2=C(C)C(=O)NC(=O)N2COCCO train 5.00 5.09
12 [O-][N+](=O)c1cc(ccc1)SC2=C(C)C(=O)NC(=O)N2COCCO train 4.47 4.41
13 Oc1cc(ccc1)SC2=C(C)C(=O)NC(=O)N2COCCO train 4.09 4.56
14 COc1cc(ccc1)SC2=C(C)C(=O)NC(=O)N2COCCO train 4.66 4.10
15 Cc1cc(cc(C)c1)SC2=C(C)C(=O)NC(=O)N2COCCO train 6.59 7.02
16 Clc1cc(cc(Cl)c1)SC2=C(C)C(=O)NC(=O)N2COCCO test 5.89 5.42
17 Cc1cc(cc(C)c1)SC2=C(C)C(=O)NC(=S)N2COCCO train 6.66 6.78
18 O=C(OC)c1cc(ccc1)SC2=C(C)C(=O)NC(=O)N2COCCO train 5.10 4.44
19 CC(=O)c1cc(ccc1)SC2=C(C)C(=O)NC(=O)N2COCCO train 5.14 3.98
20 N#Cc1cc(ccc1)SC2=C(C)C(=O)NC(=O)N2COCCO train 5.00 4.27
21 C=CCC2=C(Sc1ccccc1)N(COCCO)C(=O)NC2=O train 5.60 5.34
22 CCC2=C(Sc1ccccc1)N(COCCO)C(=S)NC2=O train 6.96 6.06
23 CCCC2=C(Sc1ccccc1)N(COCCO)C(=S)NC2=O train 5.00 5.78
24 CC(C)C2=C(Sc1ccccc1)N(COCCO)C(=S)NC2=O train 7.23 7.04
25 Cc1cc(cc(C)c1)SC2=C(CC)C(=O)NC(=S)N2COCCO train 8.11 7.64
26 Cc1cc(cc(C)c1)SC2=C(C(=O)NC(=S)N2COCCO)C(C)C train 8.30 8.31
27 Clc1cc(cc(Cl)c1)SC2=C(CC)C(=O)NC(=S)N2COCCO train 7.37 6.53
28 CCC2=C(Sc1ccccc1)N(COCCO)C(=O)NC2=O train 6.92 6.22
29 CCCC2=C(Sc1ccccc1)N(COCCO)C(=O)NC2=O train 5.47 5.80
30 CC(C)C2=C(Sc1ccccc1)N(COCCO)C(=O)NC2=O test 7.20 7.30
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Table-1 continues. . . 
31 Cc1cc(cc(C)c1)SC2=C(CC)C(=O)NC(=O)N2COCCO train 7.89 7.93
32 Cc1cc(cc(C)c1)SC2=C(C(=O)NC(=O)N2COCCO)C(C)C train 8.57 8.64
33 Clc1cc(cc(Cl)c1)SC2=C(CC)C(=O)NC(=O)N2COCCO test 7.85 6.50
34 Cc1ccc(cc1)SC2=C(C)C(=O)NC(=O)N2COCCO test 3.66 4.13
35 CC2=C(Sc1ccccc1)N(COCCO)C(=O)NC2=O test 5.15 4.75
36 CC2=C(Sc1ccccc1)N(COCCO)C(=S)NC2=O test 6.01 4.77
37 IC2=C(Sc1ccccc1)N(COCCO)C(=O)NC2=O train 5.44 5.09
38 C=CC2=C(Sc1ccccc1)N(COCCO)C(=O)NC2=O train 5.69 5.84
39 O=C3NC(=O)N(COCCO)C(Sc1ccccc1)=C3/C=C/c2ccccc2 train 5.22 5.73
40 O=C3NC(=O)N(COCCO)C(Sc1ccccc1)=C3Cc2ccccc2 train 4.37 4.87
41 O=C4NC(=O)N(COCCO)C(Sc1ccccc1)=C4\C=C(/c2ccccc2)c3ccccc3 train 6.07 5.91
42 CC2=C(Sc1ccccc1)N(COCCOC)C(=O)NC2=O train 5.06 4.61
43 CC(=O)OCCOCN2C(Sc1ccccc1)=C(C)C(=O)NC2=O train 5.17 4.77
44 CC3=C(Sc1ccccc1)N(COCCOC(=O)c2ccccc2)C(=O)NC3=O train 5.12 6.11
45 CC2=C(Sc1ccccc1)N(COCC)C(=O)NC2=O train 6.48 5.02
46 CC2=C(Sc1ccccc1)N(COCCCl)C(=O)NC2=O train 5.82 5.71
47 CC2=C(Sc1ccccc1)N(COCC\N=[N+]=[N-])C(=O)NC2=O train 5.24 4.58
48 CC2=C(Sc1ccccc1)N(COCCF)C(=O)NC2=O train 5.96 5.43
49 CC2=C(Sc1ccccc1)N(COCCC)C(=O)NC2=O train 5.48 5.48
50 CC3=C(Sc1ccccc1)N(COCc2ccccc2)C(=O)NC3=O train 7.06 5.98
51 CCC2=C(Sc1ccccc1)N(COCC)C(=O)NC2=O train 7.72 6.54
52 CCC2=C(Sc1ccccc1)N(COCC)C(=S)NC2=O test 7.58 6.42

53 Cc1cc(cc(C)c1)SC2=C(CC)C(=O)NC(=O)N2COCC train 8.24 8.32

54 Cc1cc(cc(C)c1)SC2=C(CC)C(=O)NC(=S)N2COCC train 8.30 8.03
55 CCC3=C(Sc1ccccc1)N(COCc2ccccc2)C(=O)NC3=O train 8.23 7.38
56 Cc1cc(cc(C)c1)SC3=C(CC)C(=O)NC(=O)N3COCc2ccccc2 train 8.55 9.02
57 CCC3=C(Sc1ccccc1)N(COCc2ccccc2)C(=S)NC3=O test 8.09 7.26
58 Cc1cc(cc(C)c1)SC3=C(CC)C(=O)NC(=S)N3COCc2ccccc2 test 8.14 8.75
59 CC(C)C2=C(Sc1ccccc1)N(COCC)C(=O)NC2=O train 7.99 7.66
60 CC(C)C3=C(Sc1ccccc1)N(COCc2ccccc2)C(=O)NC3=O test 8.51 8.42
61 CC(C)C2=C(Sc1ccccc1)N(COCC)C(=S)NC2=O train 7.89 7.42
62 CC(C)C3=C(Sc1ccccc1)N(COCc2ccccc2)C(=S)NC3=O train 8.14 8.20
63 COCN2C(Sc1ccccc1)=C(C)C(=O)NC2=O train 5.68 5.40
64 CC2=C(Sc1ccccc1)N(COCCCC)C(=O)NC2=O train 5.33 5.37
65 O=C2NC(=O)C(C)=C(Sc1ccccc1)N2CC train 5.66 7.36
66 CC2=C(Sc1ccccc1)N(CCCC)C(=O)NC2=O train 5.92 6.45
67 Clc1cc(cc(Cl)c1)SC2=C(CC)C(=O)NC(=S)N2COCC test 7.89 6.92
68 CC(C)OCN2C(Sc1ccccc1)=C(CC)C(=O)NC2=S train 6.66 6.19
69 CCC3=C(Sc1ccccc1)N(COC2CCCCC2)C(=S)NC3=O train 5.79 7.94
70 CCC3=C(Sc1ccccc1)N(COCC2CCCCC2)C(=S)NC3=O train 6.45 6.24
71 Cc3ccc(COCN2C(Sc1ccccc1)=C(CC)C(=O)NC2=S)cc3 train 7.11 7.02
72 Clc3ccc(COCN2C(Sc1ccccc1)=C(CC)C(=O)NC2=S)cc3 train 7.92 7.45
73 CCC3=C(Sc1ccccc1)N(COCCc2ccccc2)C(=S)NC3=O train 7.04 7.26
74 Clc1cc(cc(Cl)c1)SC2=C(CC)C(=O)NC(=O)N2COCC train 8.13 6.86
75 CC(C)OCN2C(Sc1ccccc1)=C(CC)C(=O)NC2=O test 6.47 6.23
76 CCC3=C(Sc1ccccc1)N(COC2CCCCC2)C(=O)NC3=O train 5.40 6.53
77 CCC3=C(Sc1ccccc1)N(COCC2CCCCC2)C(=O)NC3=O train 6.35 6.19
78 CCC3=C(Sc1ccccc1)N(COCCc2ccccc2)C(=O)NC3=O train 7.02 6.83
79 O=C2NC(=S)N(COCC)C(Sc1ccccc1)=C2C3CC3 train 7.02 6.93
80 O=C2NC(=O)N(COCC)C(Sc1ccccc1)=C2C3CC3 train 7.00 6.05
81 CC2=C(Sc1ccccc1)N(COCCOCCCCC)C(=O)NC2=O train 4.46 5.07
82 Clc2ccccc2SC1=C(C)C(=O)NC(=O)N1COCCO test 3.89 4.90
83 OCc1cc(ccc1)SC2=C(C)C(=O)NC(=O)N2COCCO train 3.53 4.54
84 Fc1ccc(cc1)SC2=C(C)C(=O)NC(=O)N2COCCO train 3.60 4.14
85 Clc1ccc(cc1)SC2=C(C)C(=O)NC(=O)N2COCCO train 3.60 3.85
86 [O-][N+](=O)c1ccc(cc1)SC2=C(C)C(=O)NC(=O)N2COCCO test 3.72 4.46
87 N#Cc1ccc(cc1)SC2=C(C)C(=O)NC(=O)N2COCCO train 3.60 4.02
88 Oc1ccc(cc1)SC2=C(C)C(=O)NC(=O)N2COCCO train 3.56 3.50
89 COc1ccc(cc1)SC2=C(C)C(=O)NC(=O)N2COCCO test 3.60 3.68
90 CC(=O)c1ccc(cc1)SC2=C(C)C(=O)NC(=O)N2COCCO train 3.96 4.05
91 O=C(O)c1cc(ccc1)SC2=C(C)C(=O)NC(=O)N2COCCO test 3.45 3.93
92 NC(=O)c1cc(ccc1)SC2=C(C)C(=O)NC(=O)N2COCCO train 3.51 3.60
93 O=C(OC)C2=C(Sc1ccccc1)N(COCCO)C(=O)NC2=O train 5.18 4.30
94 O=C(Nc1ccccc1)C3=C(Sc2ccccc2)N(COCCO)C(=O)NC3=O train 4.74 4.65
95 O=C3NC(=O)N(COCCO)C(Sc1ccccc1)=C3Sc2ccccc2 test 4.68 5.15
96 C#CC2=C(Sc1ccccc1)N(COCCO)C(=O)NC2=O train 4.74 5.44
97 O=C3NC(=O)N(COCCO)C(Sc1ccccc1)=C3C#Cc2ccccc2 test 5.47 5.27
98 Nc1cc(ccc1)SC2=C(C)C(=O)NC(=O)N2COCCO train 3.60 4.85
99 CC(C)C(=O)C2=C(Sc1ccccc1)N(COCCO)C(=O)NC2=O train 4.92 4.84
100 O=C(C2=C(Sc1ccccc1)N(COCCO)C(=O)NC2=O)c3ccccc3 train 4.89 4.62
101 CC#CC2=C(Sc1ccccc1)N(COCCO)C(=O)NC2=O train 4.72 4.96
102 FC2=C(Sc1ccccc1)N(COCCO)C(=O)NC2=O train 4.00 4.62
103 ClC2=C(Sc1ccccc1)N(COCCO)C(=O)NC2=O train 4.52 4.70
104 BrC2=C(Sc1ccccc1)N(COCCO)C(=O)NC2=O train 4.70 4.92
105 CC3=C(Sc1ccccc1)N(COCCOCc2ccccc2)C(=O)NC3=O train 4.70 5.56
106 O=C2NC(Sc1ccccc1)=C(C)C(=O)N2 test 3.60 5.08
107 O=C2NC(=O)N(C)C(Sc1ccccc1)=C2C train 3.82 5.63
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C and Gamma are the parameters for a 
nonlinear support vector machine (SVM) with a Gaussian 
(RBF) radial basis function kernel

The OS algorithm begins by initializing the 
main variables (o) and selecting an initial subset of d 
features using a random, SFS algorithm or another 
algorithm. Next, the algorithm launches a loop of two 
main phases: down-swing and up-swing. The down-
swing phase starts with a REMOVE step that removes 
conditionally o features from the current set of d features; 
if the new set of d-o is the best, conditionally, an ADD 
step is used to add a set of o features to the current set of 
d-o features; otherwise, the previous state is restored to 
launch an up-swing phase. If the ADD step shows 
improvement, o is reinitialized to 1, and an up-swing 
phase is launched; otherwise, the previous state is 
restored, and o is incremented by one and then proceeds 
to an up-swing. After a restoring step, if the subset shows 
improvement, an up-swing is started; otherwise, o is 
incremented by one. If the condition o < ∆ is true, the 
process is stopped; otherwise, an up-swing is launched. 
Additionally, the up-swing phase uses the same ADD / 
REMOVE steps but in the reverse order. The ADD step 

adds conditionally o features to the current set; if the new 
set of d + o features is the best so far, a REMOVE step 
begins to remove conditionally o features from the current 
set of d + o features; otherwise, the previous set of d 
features is restored (Fig 3). Thereafter, the algorithm tests 
the quality of the d features; if the quality is the best, o is 
reinitialized to 1, and another downswing is started; 
otherwise, the previous set is restored to determine if the 
subset is improved by the last down-swing. If 
improvement is observed, another down-swing is 
launched; otherwise, o is incremented by one. Finally, if o 
< ∆, then the processes are stopped; otherwise, a down-
swing phase is launched [17].
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Fig. 3: OS Oscillating Search Flowchart [17].



Ahmed Allali et al., J.Chem.Soc.Pak., Vol. 40, No. 01, 2018 28

During each evaluation of a descriptor set, 
the SVM model parameter estimation uses the grid 
search algorithm provided with LibSVM [18]. For 
learning, we used a nonlinear SVM with an RBF
kernel to optimize the cost function. All experiments 
were conducted on a PC with 4.0GB of RAM, a 2.53-
GHz processor, Manjaro Linux OS [19], and GNU 
Octave script [20]. The program was developed in 
our laboratory based on a set of M-files.

The dataset of 107 molecules was first split 
randomly into a training and cross-validation set 
(TSET) (85 molecules: 80% training data) to develop 
the QSAR models and a Test Set (22 molecules: 20% 
TestSet) to validate the QSAR models. The latter 
dataset did not undergo any treatment during the 
development of the QSAR models and was reserved 
for testing the reliability of the models only.

Results and Discussion

Variable selection is a key step in the 
process of developing a QSAR model. Many selection 
algorithms (statistics or heuristics) have been 
developed for this purpose. Success with the use of 
genetic algorithms for this purpose has been reported 
in the literature. In this work, we used another 
descriptor selection algorithm.

A good descriptor selection algorithm and a 
high number of cases (all data) are recommended to 
establish a statistically reliable QSAR model. The 
QSAR model was developed using theoretical 
descriptors calculated from a sample of 107 
molecules derived from HEPT that have been tested 
as inhibitors of HIV-1 reverse transcriptase (Table-2).

The application of the OS selection 
algorithm on the set of descriptors allowed us to 
obtain a series of optimal models of different sizes. 
Table-2 presents the series of optimum models 
obtained in different sizes ranging from 1 to 5 model 
descriptors and their validation using the coefficients 
of determination R and Q, which ranged from 0.5738 
to 0.9046 and 0.6534 to 0.9020, respectively.

Fig. 4: Optimal number of descriptors for the 
optimal model.

Determining the number of descriptors in 
the QSAR model is important to prevent, to some 
extent, chance correlations between the descriptors 
that compose the model. To determine the optimal 
number of descriptors in the QSAR model, we used a 
simple method: the breakpoint. We consecutively set 
several models of different sizes ranging from 1 to 5 
descriptors in the model. The optimal model 
corresponding to the breakpoint was obtained by 
analyzing the graphical representation of the 
coefficients of determination R2 and Q2 validation 
based on the number of descriptors (Fig 4). This 
graph reveals that the breakpoint [21] corresponds to 
the use of 3 descriptors. As a result, the optimal 
model is composed of three descriptors (SpMax4_Bh 
€; MATS5m and MLOGP).

This model has a high value of the 
coefficient of determination, which explains the good 
correlation between the descriptors and inhibitory 
activity. The collinearity problem between the 
descriptors included in the final model QSAR was 
tested by examining the correlation matrix by 
calculating the correlation coefficient for all possible 
combinations of the three pairs of descriptors. High 
values of the correlation coefficient R > 0.9 
correspond to strong correlations among the model’s 
descriptors. The results are summarized in Table-3.

Table-2: Series of optimum models obtained in different dimensions
n Descriptors train-R2 train-MSE test-Q2 test-MSE
1 MATS5e 0.5738 0.0389 0.6534 0.0225
2 MATS5m:MLOGP 0.8105 0.0148 0.7486 0.0294
3 SpMax4_Bh(e):MATS5m:MLOGP 0.8662 0.0107 0.8769 0.0142
4 SpMax8_Bh(m):MATS5m:MLOGP:TDB07s 0.8859 0.0092 0.9020 0.0085
5 P1s:R4e:MATS5m:MATS1p:MLOGP 0.9046 0.0078 0.8534 0.0144

Table-3: Correlation matrix among the three descriptors of the model.
SpMax4_Bh(e) MLOGP MATS5m

MLOGP 0.356
MATS5m -0.059 -0.333
EC50 exp 0.301 0.71 -0.742
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To generalize the implemented model to 
other data, the model was first tested and validated 
using different methods of internal and external 
validation. QSAR model validation is required to 
estimate its reliability. In this study, we used the 
randomization test method [22] (Table-4). The results 
of the randomization test shown in Table-4 confirm 
clearly the robustness and stability of our model; the 
statistical parameters of our model are higher than 
those obtained by the models generated randomly and 
show that our model is not due to chance. Thus, this 
model is effective and capable of modeling and 
predicting the inhibitory activity of reverse 
transcriptase by HEPT derivatives.

Table-4: Randomization Test
ID R2 Q2 MSE

Our model 0.866217 0.87691 0.014164
1 0.009884 -0.59519 0.13714
2 0.00794 -0.61329 0.138696
3 0.014342 -0.97974 0.170201
4 0.014641 -0.55733 0.133885
5 0.00618 -0.6317 0.140279
6 0.000026 -0.77865 0.152913
7 0.001367 -0.83449 0.157713
8 0.000002 -0.77197 0.152338
9 0.006046 -0.6332 0.140408

10 0.000513 -0.80935 0.155552

The high value of the coefficient of 
determination from external validation, Q2ext = 
0.8769, confirms the excellent predictive power of 
our model. This high value also demonstrates that the 
SVM technique is adequate to produce an effective 
QSAR model for modeling and predicting the 
inhibitory activity of the HEPT derivatives against 
HIV-1 reverse transcriptase. The influence of the 
three descriptors on the inhibitory activity of HIV-1 
reverse transcriptase can be interpreted chemically. 
Every biological activity is directly linked to the 
molecular forms of chemicals (electronic, geometric, 
and constitutional); it is thus possible to determine 
the factors responsible factors for the observed 
inhibitory effects of the compounds by interpreting 
the descriptors collected in the resulting model.

As shown in Fig 6, the two descriptors 
(MLOGP and MATS5m) significantly influence the 
biological magnitude of the inhibition of HIV-1 
reverse transcriptase. The first descriptor (MLOGP) 

correlates positively with biological response (EC50) 
and describes the hydrophobicity of molecules and 
their influence on the inhibition of HIV-1 reverse 
transcriptase. The second descriptor (MATS5m) 
correlates negatively with the biological response 
(EC50), indicating greater inhibitory activity. Mats5m 
is weighted by atomic weight: molecules consisting 
of more hetero activity are best to promote hydrogen 
bond formation and a stable ligand-enzyme complex.

The Scheme 1 demonstrates clearly the 
effect of the two descriptors, MLOGP and MATS5m, 
on the inhibitory activity of transcriptase enzyme, 
where the substitution of compound 28 (EC50 = 
6.92) with a chloride group on the aromatic ring was 
significantly improved its activity (Compound 85, 
EC50 = 3.60), contrary to the increase in 
hydrophobicity of the same compound by adding 
methyl groups has lowered its activity (Compound 
32, EC50 = 8,57). The third descriptor (SpMax4_Bh 
(e)) has a low correlation and high distribution for all 
molecules (Fig 5).

Scheme-1: Two descriptors MLOGP and MATS5m.

Table-5: Definition of the selected descriptors.
Descriptors Definition

MLOGP (Moriguchi octanol water partition coefficient) descriptor choice belonging to the family of molecular properties.
MATS5m (Moran Autocorrelation of Lag 5 weighted by mass) 2D block family autocorrelation.

SpMax4_Bh (e) (largest eigenvalue n.4 of the Burden matrix weighted by Sanderson Electronegativity) of the Burden eigenvalue family.
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Fig. 5: Graphical representation of EC50 
(Experimental) = f(SpMax4_Bh(e)).

The effects of all molecules on biological 
activity are clearly explained by the two MLOGP and 
MATS5m descriptors (Fig 6). The results also 
revealed a small influence of the third descriptor, 
SpMax4_Bh(e) (Fig 5), on the inhibitory activity of 
HIV-1 reverse transcriptase for all molecules (Fig 6).

We aimed to compare the results obtained 
using this model and those obtained from previous 
analyses of the same set of molecules and the same 
biological magnitude (Table-6). Based on this 
representation, the model obtained by the application 
of OS-SVM is superior to previous models in two 
aspects: the strong correlation between the value of 
EC50 and the descriptors (R2 = 0.8662), the nature of 
the selected descriptors and information carried by 
these selected descriptors, and, finally, the high 
predictive power of Q2ext (0.8769).

Fig. 6: Effects of MLOGP and MATS5M on the 
experimental EC50values.

We graphed the calculated EC50 values as a 
function of the experimental EC50 values (Fig 7).

Fig. 7: Calculated and experimental anti-HIV-1 
activity values for the test set.

Table-6: Comparison of studies using the same set of 
HEPT derivatives.

Model K R2 Q2 Ref.
1 MLR 9 0.9 0.745

PLS 9 0.889 0.8599
[12]

2 MLR 5 0.815 0.783 [24]
3 MLR 4 0.83 0.7

FFNN 4 0.852 0.81
[25]

4 FFNN 7 0.977 0.862 [26]
5 RBFN 11 0.927 0.855 [27]
6 MLR 5 0.904 0.827 [28]
7 MLR 8 0.837 0.837

BPNN 8 0.867 0.841
SVM 8 0.863 0.856

[29]

8 MLR 4 0.799 0.597
ANN 4 0.825 0.671
SVM 4 0.817 0.561

[30]

9 SPA-UVE-PLS 9 0.84 0.8 [31]
10 MLR-ACO 7 0.86 0.85 [32]
11 SVM-RBF 6 0.945 0.881 [33]
12 MLR 6 0.811 0.778

FFNN 6 0.919 0.919
[34]

13 MLR 9 0.949 0.745 [35]
14 CP neural network 11 0.875 / [36]
15 RBFNs 11 0.927 0.925 [37]

16 Montecarlo 7 0.8818 0.9243 [38]

17 OS-SVM 3 0.8662 0.8789 This work
K: Number of descriptors per model
MLR: Multiple Linear Regressions
PLS: partial least squares
FFNN: Feed Forward Neural Network
RBFN: Radial Basis Function Network
BPNN: Back Propagation Neural Network
SVM: Support Vector Machine
ANN: Artificial Neural Network
SPA-UVE-PLS: SPA Successive Projection Algorithm, UVE Uninformative 
Variable Elimination
MLR-ACO: Ant Colony Optimization
CP neural network : Counter-Propagation Neural Network
RBFNs: Radial Basis Function Networks

Conclusion

In this study, we conducted a quantitative 
analysis of the inhibitory activity-structure 
relationship for HIV-1 reverse transcriptase using a 
set of molecules derived from HEPT. A non-linear 
model was developed using the SVM method. The 
statistical results showed good correlation between 
the activity and three molecular descriptors opened in 
the built model. The high values of the determination 
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coefficients from internal and external validation 
clearly confirmed the stability, robustness and good 
predictive ability of the built model. These results 
demonstrate that the SVM technique is adequate to 
produce an effective QSAR model that is capable of 
modeling and predicting the inhibitory activity of 
HEPT derivatives against reverse transcriptase.
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